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ABSTRACT
(o 4 .

We disouss a method for suppressing the oscillations of a linear system
subject to an external periodic disturbance of fixed, but unknown, period.
The method entails augmentation of the original plant with a compensator and
parameter identifier. The near equilibrium dynamics of the resulting system
are analyzed and shown to be related to a linear delay equation with infinite
delay and periodic coefficients. A corresponding Floquet theory is
indicated. A FORTRAN program approximately realizing the period identifier is

included and numerical results obtained with this program are graphically

displayed and analyzed.
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o SIGNIFICANCE AND EXPLANATION

o ~

For a wide variety of systems, including sighting devices, weapons,

machine tool arms, etc., operation under conditions which involve significant

t oscillatory disturbances is necessary. Often it is desirable to dynamically
ki decouple the system from the disturbances by means of the intervention of

.

b+, active control. In many cases this must he done without a prior knowledge of

the period (equivalently, the frequency) of the incoming disturbance. 1In this

ﬁ ) paper we propose a method for such vibration suppression using a compensator
3
[ and frequency/period identifier. The stability of the resulting complex is . i

analyzed and numerical studies are presented to indicate the potential

I

14

effectiveness of the procedure.
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FREQUENCY/PERIOD ESTIMATION AND ADAPTIVE
REJECTION OF PERIODIC DISTURBANCES

D. L. Russell*
0. INTRODUCTION
In a wide variety of applications one encounters a system of the form

X=Ax+cu+v, (% = 45 (0.1)
wherein x is the n-dimensional state vector, u is the m-dimensional control vector
and v is a periodic n-dimensional vector disturbance function with least positive
period T:

vit) = v(t +T) . (0.2)
In many cases X = Ax by itself represents the dynamics of an elastic system, the
disturbance v arises from the environment in which the elastic system is placed, and the
control u is used to mitigate the effects of this disturbance. Examples include
sighting devices (cameras, telescopes, etc.), weapons, and machine tool arms, operated
under conditions which involve significant oscillatory disturbances, such as would be the
case for a telescope operated from an aircraft, e.g.. Another important application
arises in connection with the measurement and active suppression of aerodynamic flutter in
aircraft wings, tail structures, etc.

The approach taken in this paper {8 to suppose that v(t) can be adequately modelled

by

vit) = Bz(t), B n x 2r, (0.3)
where z(t) satiafies a linear system

z=Fz, (0.4)

*Mathematics Research Center/Department of Mathematics, University of Wisconsin, Madison,
Wl 53706.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and in part by the
Alr Porce Office of Scientific Research under Grant 84-0088.
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0 a, 0 0 —— 0 0
-y, 0 0 0 —-— 4] 0
F o= 1} 0 0 a, -— 0 c
] 0 a, 0 —-—— 0 0
= - = = = = (0.5)
[y 0 0 - 0
r
0 0 0 0 -—— -t 0 B
r
2k2ﬂ
“j = T = kjﬂ, J = 1,2,¢0.,x, (0.6)
[' the k; being positive integers. These need not necessarily be 1,2,...,r; in some cases

b}

it is known, e.g., that only odd order harmonics occur so that we would use k4 = 1,

ko = 3, «.., kp = 2r -1,
Assuming F known, and this will bring us to the subject of frequency estimation

later on, we can construct a compensator

; = Sx + Fy (0.7) ‘

where y is the 2r-dimensional compensator state, and consider the combined system

x = Ax + Bz + Cu !
Yy = Sx + Fy (0.8)
z = Fz .

We will suppose that the range of C includes the range of R. This means that, in

principle, one could solve
Cu = -Bz (0.9)

and cancel the effect of the disturbance altogether. For a telescope operated from a
moving vehicle, neqlecting translational motion and considering only the angular
displacements, this would be the case if the controls, acting through the mounting, have
both azimuth and elevation correctional capability. In practice the direct cancellation
(0.9) is rarely feasible due to noise, measurement delays, limited measurement capability,

etc.

-2~
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Let ¢ be any nonsingular 2r x 2r matrix which commutes with F; 1in most casesg we
would use the identity matrix. We may then find an m x 2r matrix L such that
LA O (0.10)
Assuming additionally that (A,C) is stabilizable, let X be an m x n matrix such

that A + CX is a stability matrix and let u be generated by the feedback control law

u=Kx + Ly « (0.11)
Using this in (0.8) we have
x A+ck-8t'p x
y|= s F 0 Yy (0.12)
z 0 0 P z .

We will see in Section 1 that it is possible to select S in such a way that the
control law (0.11) dynamically decouples the plant state x from the periodic
disturbance v{(t) = Bz(t).

The foregoing scheme, to be developed more fully in the next section, clearly amounts
to the construction of a reduced order observer for the disturbance state z(t) (see
[10]) and assumes that the plant state x(t) is completely accessible. If this is not
the case, dynamic decoupling is probably best realized with the construction of a full

n + 2r dimensional state observer. Assuming an observation

w = Hox + Hyz (0.13)
available such that the pair
(Hg ,Hy) A+CK B (0.14)
0 F

is observable, compatible matrices Lg,Ly are gelected (see (8], e.g.) such that
A + CK - LgHg B - Ly (0.15)
- LyHg F - LqHq
is a stability matrix. We then adjoin to the plant disturbance system
x = (A +CK)x + Bz + Cu (0.16)

Fz (0.17)

Ne
L}

-3-
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the estimator system

E

(A + CK)E + LO(Hox - HOE) + LO(le - H1E) (0.18)

Fz + L'(Hox - Hog) + L,(H’z - H1C) .
Then, choosing u such that
Cu = ~BF (0.19)

and letting e =x~Tr, F =2z -F we find that

(]
>
+

e CK -~ LOHO B - LOH1 e
L H F-LH f

£ 10 11

and we conclude, since (0.15) is a stbility matrix, that
lim e(t) = 1lim £(t) = 0 .
te ti®
Since, with (0.19), (0.16), (0.17) become
x = (A + CK)x + Bf (0.20)
z = Fz (0.21)
we conclude that
Iim x(t) = 0
treo
and thus x(t) is decoupled from z. This is a standard procedure, such as described in
[10], for example.
wWhether decompling is carried out as in Section 1 or as above, it is clear that the
estimator system requires knowledge of the matrix (0.5) and hence the parameter a = 2n/T
in (0.6). When the period, T, and hence a, is unknown it is necessary to adjoin a
parameter estimator to supply the system with an estimate for T. Such a parameter
estimator is Jdescribed in Section 2. Stability considerations in connection with the
period estimator lead to examination of a related functional equation of retarded type in
Section 3. A numerical realization of the estimator of Section 2 is developed in Section

4 and examples of its use are presented in Section 5.
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1. COMPENSATOR DESIGN FOR A KNOWN DISTURBANCE FREQUENCY

If the period, T, or, equivalently, the frequency v = 1/T, of the disturbance v
is known, then we may assume that F 1is known and the only problem in constructing the

compensator (0.7) is the selection of the 2r x n matrix §S. Let us note that the matrix

equation

-1
fA;CX "B: 1(21-(:1p+(31-0 (1.1)

is clearly valid whatever S may be. This means that if we define F, n by

(;\=(21z+(:\ , (3 = F2) (1.2)
we shall have

. -1

F A + CK -B& F

(“)=( s v Vn) , (1.3)

as is easily checked. If the matrix in (1.3) is a stability matrix, then x(t) = F(t)

will have the property

lim ¥x(t)V =0
o

so that the pericdic disturbance v(t)} = Bz(t) has only a transient effect on x(t); the

range of the transfer function matrix from =z ¢to (;] includes only vectors of the form
(:]. Thus the plant state vector x is dynamically decoupled from =z. If the matrix in
(1.3) is not a stability matrix no such inferences are valid. Our proof that § can be

selected so as to satisfy this stability requirement begins with

THEOREM 1 Let F be antihermitian, (as in (0.5)), so that

F* = -F .

Then the n x m linear matrix equation

(A + CK)P, = P,F - B~ = o (1.4)

has a unique n x 2r solution Pg,. If the pair (Py,F) is observable, then the 2r x n

PP U R LA -
PR AV TN W L e N G T, P S P

L T A
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matrix S can be chosen in such a way that

-1
_ (A + CK -B®
M= s e ) (1.5)

is a stability matrix.

Proof Since F* = -F implies that F has only purely imaginary eigenvalues, the
existence of a unique solution Py of (1.4) is assured by a familiar theorem in matrix
theory (see, e.y., [2]). An easy application of the implicit function theorem then shows
that the cubic matrix equation

(A + CK)P - PF - B8~ + €PP*P = Q(P,e) = 0 (1.6)

has a unique solution P = P(e) defined for small € + 0 with

lim P(€) = Py (1.7)
€+0

Setting
S = s(g) = -cP(e)* (1.8)

we note that M in (1.5) is similar to

-1‘{In P(e))
I, ' -eR(e)* F o I,

- I -P(e) A+ CK -Bb
M(e) = { 0

= (A *+CK+ EP(£)P(E)* O(P(€),c) )

-eP(e)* F ~ eP(e)*P(€)
(A + CK + €P(€)P(€)* 0 )
-€P(€)* F - eP(e)P(e)* .

Since ¥ has been chosen so that A + CK is a stability matrix,
Mn(e) 2 A+ CK + eP(e)P(e)*
is an n x n stability matrix for sufficiently small € > 0. From the antihermitian

property of F we can see that

{F - ep(e)*p(e) ) I, + Izr(F - €P(e)*P(e)) + 2eP(e)*P(e) = O.
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Applying a well known modification of Liapounov‘'s Theorem (See, e.g., (8]} we conclude

that

Mzt(e) = F - eP(e)*P(¢c)

is a stability matrix for € > 0 if (P(¢),F) is observable. Since we have assumed

(P,,F) observable and (1.7) is true, (P(c),F) 1is observable for € > 0 sufficiently

small and Mzt(e) is thus a stability matrix for these values of €, at least. Since

Mie) is lower block triangular with blocks Mn(E). H2r(e)' its stability, and hence

that of M = M(€) in (1,5) is assured with the choice (1.8) for S = S(e) for

sufficiently small € > 0.

It will be noted that the choice of the feedback matrix X is import .n at least

two ways. Improvement of the convergence of ¢_1y to z, 1i.e., reduction of tt-
transient effect of the disturbance v = Bz, dictates choosing € larger to improve

stability properties of F - eP(€)*P(e). But, since A + CK + e€P(€)P(e)* suffers,

the

stabjility-wise, as € 1is increased, X must be used to offset this effect. 1In Section 3

we will find even further considerations to take into account in the selection of ¢

and K.

Since P(e) satisfies a cubic equation, which may entail some difficulty of

solution, the following corollary is useful in applications.

COROLLARY 2 If € is sufficiently small, then
1

A+ CK - B%

M(e) = - - ’
EPO F

corresponding to

~ *
s s(g) -epo

in (1.5) is also a stability matrix.

Proof With the indicated choice of S the matrix M{(e) is similar to
-1
- -Bo
I PO (A + CK B ) (I Po
0 I -EPO' F 0 1

-7-

(1.9)

(1.10)




AT Ve T A A I W Tor o v Lind W Pl i Sel adl and sallh soll Ak rad ani.Snd Sad Aall Aol dad Aat 4 ..w'?'r—w‘_v'v'~.\—--*1

-1
A+CK+€PP‘(A*CK)PO-PF-B° + EP _P_*P

_ 0’0 0 ofo Fo
- - * - -
EPO F EPO PO
A + + * P P_*P
= et () = TR oot (1.11)
- . - - Y - - . -
EPO F CPO PO

1
let u =¢€ 72 for € » 0. With Po(u) = uP the matrix (1.11) becomes

0’

1
A+ CK + Po(u)Po(u)' " Po(u)Po(u)'PO(u)

-uPO(u)' F - Po(u)'Po(u)

which is similar to

A+ CK + Po(u)Po(u)' Po(u)Po(u)'Po(u)
-Po(u)’ F - Po(u)'Po(u)

A1(U) P3(u)

(1.12)
-Po(u)* F1(U)

The corresponding lower triangular matrix
A () 0
- *
Po(u) F1(u)
is a stability matrix, using essentially the same argument as in Theorem 1, provided

u >0 is sufficiently small. Consider the equation

A1(u)' -Po(u) Q R o] R A1(u) 0
0 F . O*\R* T * R* Tf\-P _()* F_(u)
1 0 1
I 0
=0 . (1.13)
0 2PO(u)'P0(u))
Solving this, we find that T = I, and
A %o - Po(u)R' + QA (u) ~ RP (u)* + I =0 (1.14)
A1(u)'R - Po(u) + RF1(U) =0 . (1.15)

-8~




el Rady DSl R AR Dl SO 0 S A e T A R A S e a2 T T T W oegryreey e — ey
»‘
-
‘* For small u (equivalently, small € ) the eigenvalues of A1(u) and -F1(u) are
:] uniformly separated and solution of (1.15) shows that
=
- R = ofvpy(u)1) = otu)
) and then a similar analysis of the first equation shows that
2
o= Qo(u) + (u®)
where
A1(u)'Qo(u) + Qo(u)A1(u) +1 = 0.
Thus Qo(u), and hence ¢, remains bounded for u > 0 small. Since (1.13) is
satisfied, using the matrix of (1.12) instead, we have
A1(u)' -Po(u) Q R . Q9 R A,(u) Ps(u)
* * * * - L ]
p3(u) F1(u) R T R* TI\ 5P () 4F (u)
-,| -
o I 72—QP0P0 I (4}
2
0 Y2 upg* 75 PoPo'@ Y2 up,
u4
— » »
+ 3~ PPy *PPe*@ 0 0 }.
0 0
From this it is easy to see that the matrix on the right hand side is nonpositive for
small u > 0 and the result follows by the familiar Liapounov theorem, provided that
whenever
Eya i Bty
n 0 s 1 n
-
g‘
-
-
P
3 -9=
3
]
L ¢
-
4
3
. -
E ) = } e - = . .- - - —=
A LA S IR VAL S N PV UL G T S ’.A_'.A_'.A.'.~_.“L:L \'“1\: -;Lx'.';' JL e . :':' ;.".‘;.""‘-"“.' ‘. L .-.‘.,L "A-::- y
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the quadratic form

[z(ey>,nier) I ;:— CRATE:
-uz
o V2 UPO' 72 PO

|

cannot vanish on any interval of positive len
very quickly to the observability of the pair

This completes the proof.

4 - »,
0 N OP P *P P *Q 0

P,*0 /2 up, 0 0
£(t)
ne)

gth. For small i > 0 this question reduces

(Pg,F), which has already been assumed.
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2. PERIOD ESTIMATION AND A RELATED STABILITY PROBLEM

Whether the submatrix S in the definition (1.5) of M is selected as in Theorem 1
or as in Corollary 2, or by some other procedure, it is clear that the overall matrix M
will depend on the period, T, of the disturbance v so that, supposing now that the

design parameter ¢ has been fixed, we have

-1
_ (A + CK =-Bd(a)
M=Ma) =" S(a) () ) (2.1)
2n
where a = = (if (0.6)).

It would be possible to estimate a directly using various well known parameter
estimation procedures ((6], (9],). However, in these procedures one tends to encounter
either instability or slow convergence, or other difficulties. For example, the model
reference algorithm of (6] cannot be applied because, in the complete system (0.12) the
portion z = Fz of that system is not controllable with respect to u.

We have elected to use a very simple procedure to estimate the period, T,

directly. Assuming that an output, or ohgervation

B(e) = Hyx(e) + Rpy(t) = (B ) X2 = muce), (2.2)

where {(cf. (0.3), (0.12), (1.5)).

w=Maw+Aa [R= (;)\ (2.3)

is available, from the assumed stability property of the matrix M(a) it follows that a
periodic disturbance input v will result in an output w(t) which, except for transient
behavior, is also periodic with the same period. It therefore makes sense, in the

continuous framework which we use here for analysis, to consider the cost functional,for

vy >0,

t -
CO(T,t) = [ eY(s t)fw(s) - wis - T))*(w(s) - wis - T))ds
0

c -
f ey(s t)fw(s) - wis - To"H'H(w(s) - wis - T))ds
0

-11=
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and select, as our estimate for the period T at time t, that value T(t) which
minimizes C(T,t) within a given range T1 <TC 'r2 . (The range must be restricted in
order to avoid the trivial period T = 0 and multiples of the minimum period of the

disturbance.) Then

2w
) (2.5)

a(t) =

is the estimate at time t for a in (0.6), {(2.3). A numerical procedure approximating

Y

this optimization process is described in Section 4 and is used to obtain the
£ computational results of Section 5. There it will be seen that certain steps do have to
be taken in order to ensure the stability of the combined control/estimation system. Our

purpose here is to provide a framework for the stability analysis by developing a

linearized variational equation for that system about the nominal time trajectory in the
case where the true period, which we will call Tj, lies in the interior of the interval
<
'1‘1 <T T2.
For our analysis of the combined use of (2.3) and (2.4) we will consider, instead
of Co(T,t), as given by (2.4), the cost
t Y(s-t)
cir,t) = [ e (wis) = wis - T))*n*n{w(s) - wis ~ ))as , (2.6)
0
wherein we assume that the trajectory w(s) is defined in the indefinite past. The

justification for this lies in the fact that if (2.3) and (2.6) together yield a stable

process, the difference between the use of (2.6) and (2.4) will be transient.

2

T

To carry out this program we begin by supposing that when the correct value a, =
0

is used in (2.3) the steady state T, - periodic solution resulting from the T4 =
periodic input v(t) is wg(t) and wo(t) = Hwg(t). Since our estimate, a(t), will vary
from ®,, we suppose that the actual solution of (2.3) which we obtain is w(t). Thus

R(e) = (e - To) (2.7)

wit) = wo(t) + Aw(e) , (2.8)

-12-
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a(t) = a; + Aa(t) , (2.9)
T(t) = Ty + AT(t) . (2.10)

A necessary condition in order that T(t) should minimize C(T,t) is obtained by
differentiating C(T,t) with respect to T and setting the result at T = T(t) equal to

zero. Thus (cf. (2.2), (2.3), (2.5))

0 = 1 3CtT,t)
2 At T = T(t)

- (teY(s

-0

"t (w(e) - wis ~ T(t)))*H*Hw(s ~ P(t))ds

t
= e B ) (4ia) = wis - Te)) ) *nela(als ~ T(£)))wls - T(e))

-

+efs - re))0as (2.11)
Noting (2.5), we see that (2.11) is, implicitly, an equation for T(t) which is coupled
with the system (2.3) satisfied by w(t). The resulting coupled system is clearly a
nonlinear functional equation of delay type. We are concerned with the (at least local
with respect to a, and wg(t)) existence, uniqueneas and asymptotic stability of

solutions.

LEMMA 3. Por fixed t and a trajectory w(s) -2 < s < t, for (2.3), corresponding to

a continuous Ty - periodic f(s), -~ = <s < t, the equation (2.11) is solvable for

T(t) near T, if
- (wit) = wit - 'ro)\'ntv':(t - T,
rteY(s-t)

+ ;(a)'H'Q(s - To)ds

-l

t
+v [ eY(s-t)fw(s) ~ wis - To)\'ﬂ'w(s - To)ds
-

-13~

.
S, v s R .. « ' . PR A IR .. :
. - - SIS SN LTRSS ST S NI % 2P SN -SRI SIS WAL S S I S




LM g 2L AT g A N "N “ A AR AT S SR I i) EliP it R e Rt A i Jaul SR S i A S Madh L o /et
t y(s-t) o .
o[ e w(s)*H*Hw(s - T,.)ds
0 0
a Y(s-t) .
-3c e (w(s) =w(s =~ T .))*H*w(s - T )ds #* O (2.12)
I 0 0

Within the class of w which satisfy

Tw(sg)! < M - < gt , (2.13)

0’

Tw(s) - wo(s)l €e, t~1<g<t (2.14)

this is true for sufficiently large T are sufficiently small e if

t
f eY(s-t) wo(s)H'Hwo(s)ds #0 (2.15)

and this, in turn, is true if the T, - periodic function Hwy(s) = mo(s) is not

constant.

Proof Assume for the moment that R(t) is a function in cl. Differentiating the second

line of (2.11) with respect to T at T = T; and retaining only zero and first order
terms in AT(t) we obtain the equation, linearized with respect to AT,

0 = ! eY(s-t)

-

wis - To)'H'H\:r(s - To)dsAT(t)

t o
f eY(g-t)fw(s) - wis - To))'H'Hw(e - To)dsAT(t)

-

t

Y

+ e (s-t)(w(s) - wis - To)"H'H;(s - To)ds + ieee (2.16)

[
-
Integrating the second term by parts we have

- t - L ] L]
0 = [-(w(t) - wit - To))‘H'Hw(t - To) + | eY(s t) w(s) *H*Hw(s - To)ds +

-

-14~
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t L]
+ al e“' t)fv(l) - vis - To”'“'“"(' - 'ro)dﬂl\'r(t)

-

t Y(s-t) .
+ 1/ e [wia) = wis - To))'ﬂ'ﬂw(l - To)ds + s (2.17)

[
-
This expression no longer depends on w(s - To), hence we may relax the requirement

0 can be uniformly approximated in the c® nom hy R € c‘.

R e C1 since R e
Examination of the remainder term shows that the same argument applies there and we
conclude that (2.16) is indeed valid to first order in AT(t). The first statement of our
lemma then follows immediately from the implicit function theorem.

The laat statement follows from the property

vo(s) - wo(a - To) 20, »<g<t (2.18)

together with (2.3), (2.7), (2.17)., which enable one to make the first term in (2.16)
arbitrarily close to the left hand side of (2.15) and the second term arbitrarily close to
zero., This completes the proof of lemma 3,

The linearization with respect to AT, Aw 1is obtained by using (2,18) in (2.16).
Bacause vo(l) - vo(l - To) 2 0 and because only zero order terms are retained as

coefficients of the first order term AT(t), the result is

t
[ eY(l'i:) vo(')ontﬂwo(g - To)ds]l\'!‘(t)

t yis-t) .
+ [ e''" (Aw(s) - Aw(s ~ To))'ﬂ'vo(s - To)dl =0 ,

(

and using (2.18), ;O(s - To) = w(s), and the assumption (2.15) we have

t L]
-1 "5 (pu(e) - Aw(s - T,) ) HoRV (8)ds

-l
AT(t) = . (2.19)

t Y(s-t) ° .

[ e w_(s)*H*Hw _(s)ds
. . 0 0
1: which is a delay type functional equation relating AT(t) and the time history of Aw,
3
l: ~15~
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Then from (2.3) we have, to first order,

. . M
Aw + wy = Mlag)wo + B + M(ag 8w + (35 (ao)Aa)w + oees

0
and, since ;

and

2%
2
0

. M
Bw(t) = M(a )bw(t) - ( 3q (39w (E))AT(E) .

A single equation may be obtained by noting that for <t > To

Aw(s) = A&(s - To)

2x IM
= M(a,)(&w(s) - Bw(s - -ro)) T—3 T (99)¥o(8)AT(s)
0
2% M
+ = (uo)vo(s - Tb)AT(s - To)
T
0
28 M
= M(a,)(Bw(s) - du(s -Ty)) 1% (aglw,(s) (aT(s) - AT(s - T() ,
0

where we have used wp(s) = wyis - Tg): Then

Aw(t) - Aw(t -~ To)

t M{ag)(t-0)y,

-2%
- ;—2 | e 3 (%g Wy (@)(AT(0) - AT(o - T,))ds
0
and thus
Zn/Toz
AT(t) =
Y(s-t) * .
{.e wo(s)'ﬂ'wo(s)ds

aM e Mlag)*(s=0)

*
wo(o) — (a ) e

t 8
Y(s-t)
I € j 3a 0

x

-a0 -0

(aT(e) - AT(o - T} )do HUHw (s)ds .

-16-
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Letting
2v/m
Wy (Y.t) = — (2.21)
f ey('-t) Go(l)'ﬂ'ﬂ;o(l)dl
-
we have
[
t N et y(s-t) M(a;) (s=0) |
aT(t) = W (Y,t) {.wo(d) 33 (3, i e e H*Hw(8)ds
x (AT(0) = AT(0 - T,))do,
which has the form
t
ar(e) = [ w,(v,t,0,May))(am0 - T())do (2.22)
-l
with
*
an M(a ) (8-0)

. v et .
w,(v.t,0.Ma)) = Wy (Y.tdv (o) 32 (ag) £ FAAL AL HYHw, (8)ds (2.23)

LEMMA 4. W1(1,t,o,n(n°)) is periodic in t and o with period T,, in the sense
w (v,e.0.m0a)) = wo(v,e + To00 + T M@g)) .

Proof. Using the formula (2.23) directly we see that

- * 3M *
o+ TooMla )] = Woly,t + Tow (o + To) 3o (ap)

ol

[
t*To QY(l-t-'ro) n(ao) (l-d-To)

x | e H*Hw,(8)ds .

G+T°

From the T, - periodicity of wo(t) the same periodicity of wo(y,t) follows easily.

Then with r = 8 - T

- *am *
w1(1,c + 1.0+ TO,H(ao)) W Y, thw (o) == (ag)
3 R (TR
F. x | oVFH)g H*Hw(r + T )dr
[+]

-17- |
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and, using the T, - periodicity of ;O we have

w1(y,t + Tg,0 4 To,u(ao)1 = W1fY,t,a,H(u°)] ,

as claimed.

The equation (2.22) can be rewritten as

t

Ar(e) = [ w(v,t,o,u(ao)lAT(a)do (2.24)

with

Wy, e,0,Ma))) = w (v,e,0mea)), -1

<
0(6 t

wiv,e,0Map)) = W (v,t,0,Ma))) - w1(y,c,o + T M), =<o<t-T, .

Since, for ¢ =t - T, w,(v,t,0 + Ty M(9y)) = w1(y,t,t,u(a°)) = 0 we see that

H(Y,t,d,u(ao)) is continuous as a function of o and, clearly,

wiv,t + Tg,0 + TyMlag)) = wlv,e,0,Mtap) .

We have shown Y, M(uo) directly as argquments of W because Y, € and K, the last two

involved in the construction of M(uo) (see (2.1)) are the parameters which we have to

work with in order to influence W,

and hence the solutions of (2.24). It is clear from

(2.22) that W depends on Ty as well.

=-18-
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3. ANALYSIS OF FLOQUET TYPE SOLUTIONS

The fact that the eguation (2.24) involvea an infinite time delay places it in a
class of functional differential equations with periodic coefficients whose properties
have not been fully explored. From the behavior of solutions of such equations with
finite delays ([3], (4]) we expect that, with some restrictions on the kernel

W{Y,t,o,n(ao)), the dominant solutions should be solutions of "Floquet type”, i.e.,
solutions of the form
aT(t) = e*tr(e) , (3.1)
where P(t) is a continuous Tp = periodic function:
P(t + Ty) = P(L) .
The main point of this section is to indicate that this is, indeed, the case for kernals
satisfying a uniform decay condition
[wiv.t.omiap)] <c ect9 g,
for positive C, c.

Before entering upon the proof of this, let us note some rather transparent results
which, however superficial, give some indication of the factors which are likely to play a
role in our analysis. Suppose an inequality (3.2) is satisfied for positive ¢, C.
Supposing a solution of the form (3.1) to exist, we normalize P(t) so that

sup |p(a)| = 1.
se(t, t -~ Tl

Then we let t be such that |P(t)] = 1. Multiplying by a constant, if need be, we may

assume P(t) = 1. Then

t
-] W(Y-taO'H(GO))eAGP(O)do -1

-0

At
e

or

t -
J w(Y,t,a,M(ao))eA(° t)

-0

P(o)do = 1

~19-
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But

Iw(y,c,o,n(ao))e“°"’p(o)| < c elc * ReO)](0-t)

So that
t
¢ | Jle + ReV) )(o-t) o )

-k

yielding an upper bound on Re(A):

C - _
m)l)ke(k)(C C .

Under what circumstances could a bound of the type (3.2) be expected? Recalling that

* M * y({o=-t
w,(y,t,o,u(co)) = WolY,t)wo(o) 2 (ay) e’ (o°t)

t

H(Go)'(s-d)
x [ e
4]

Y(s-c)e H'Héo(s)ds

we note that with r =g - 0o,

(M(a)* + yI)r t-o
0 HYHw(r + 0)ds = | e(M(uo)- + YI)r
0

t
] eY(s o)e H‘Hwo(r + 0)dr
o

Since 50 is periodic, if the eigenvalues u of M(ao) satisfy

Re(u) < - § ,
for some § > 0, we will have, for some Ho >0

(Ma)* + yI)r _
e ° Hewa (x + 0) 1 < me (YO

so that

t-0 (M(ag)* + yDr
1) e H'Hwo(r + ¢)drl
0
t-g M
(v=8&)r, _ "0 (Y-8)(t-0)
o{) e dr -Y—_-s- [e - 1] . (3.3)

<M

-20-
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We expect W, (t,Y) to be ((y) from (2.21); write
Wyt v)| < Myy

and then, since wo(d) is periodic,

M * Y(o-t)
Iwo(t,Y)wo(d)' ~ra (00) e [ ]

< M,y e¥(o-t) (3.4)

Combining this with (3.3), (2.23)
~ §(o-t)
[w,(vot,0map)} < M, TIT e

giving C = M0M2 7§§ ,c= 8,
A comparable estimate will then apply to W(Y,t,a,u(ao)].

From this we see that if we are to control the identifier stability properties, this
must be done through Y and through the system matrix M(yo), by choice of Yy, € and
K (or through choice of Y, K ,Lo, L, if we use the full system estimator as decribed in
Section 0. Further, we see from (2.21) that WO(Y,t), and hence w,(y,t,o,M(ao)),

W(Y,t,o,n(uo)) increase rapidly as the frequency parameter a = %i increases, i.e.,

as T, decreases. Thus, to be able to reject higher frequencies while maintaining
stability we must expect to find it necessary to increase the damping in the system (2.3)
by use of higher gains € and K (of (1.5). 61.82)). We will also see in Section 5 that
this expectation is realized.

We proceed now to state a theorem to the effect that if a bound of the form (3.2)
applies, then all solutions of (2.24) which do not satisfy

1a7(t)0 < Be B, o<t cm, (3.5)

where B is positive and B > 0 is less than ¢ by an arbitrarily small amount, must be

linear combinations of Floquet type solutions.

-21=
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THEOREM 5. Consider the vector functional equation

t
z(t) = | W(t,s)z(s)ds, z e R", (3.6)

where W(t,s) is a (piecewise continuous, at least) m x m matrix function satisfying

Iwit,s)t < cec(t~8),

- < s <t , (3.7)
Wit + T, s + t) = W(t,s) (3.8)

for positive numbers C, ¢, T. Then, given any 8 < ¢, and any solution z(t) with

locally square integrable initial function satisfying

0 g~ 2
| e““®1z(s)1 nds <, (3.9)

g R
we can write
z(t) = zp(t) + zB(t), t >0 (3.10)

where, for some positive B,

ENCOTI Be™Bt, ¢ 0 (3.11)

and zF(t) is a linear combination of Floquet type solutions, i.e., solutions of the form

c(t) = e*p(e), B(e + 1) = P(t), Pec (0=, ), (3.12)

or, in some cases (multiple "eigenvalues")

t(t) = e*tePr(e) (3.13)

where p is a positive integer and P(t) is as in (3.12).

A complete proof of Theorem 5 is beyond the scope of the present work but a sketch of
the proof will be given in Section 6.

From this result we see that whenever an inequality of the type (3.2) is valid with
c > 0, then all solutions of (2.24) decay at a uniform exponential rate unless there are
actually solutions (3.1) of Floquet type for which Re(A) > 0. The question arises, of
course, as to how such Floguet exponents might actually be computed. It seems almost

certain that the most efficient procedure involves actual solution of (2.24) or (2.19),

-22-
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(2,20), assuming an adequate approximation procedure is available. The procedure is
essentially the same one as is used to compute the dominant (pairs of) root(s) of an
ordinary polynomial.

Returning to AT(t) as the name for the solution, we select a more or less arbitrary
initial state AT(t) on some interval [-1,0] (in terms of Section 6 this should be a
% such that the residue of (I - Q(A))™' q(A,Z) at A = Az is not zero, which is
generically true). The resulting solution AT(t), t 2 0, is computed and we examine

successive segments of length Tg

ATk(s) = AT(kTo +8), 0<s<TT k=0,1,2,3, °°°.

o'
If the largest multiplier
XvT

uv = e

0

is a unique real number, then generically with respect to the choice of initial function

Ar(t), t € [-1,0], we shall have (using the least squares approach)

T
| AT, (8)AT, _,(8)ds
0
u, = lim T .
k¥ (ar,_ (e))%as
o | k=1

In the case of a dominant complex conjugate pair the procedure is only slightly more

complicated. We gsolve
AT, (8) + adT, _ (s) + BAT _,(s) =0
for @ and B in the least squares (least L? norm) sense, which amounts to

T T

g st _,(s)%as [ bz, (s)aT,_,(s)ds

“k +
T T 2 Bk
g 8T, _,(8)AT, _,(s)ds g 8T, _,(s)"ds

~23-
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é AT, (8) AT, _,(s)ds

T
g AT, (s) AT, _,(s)ds

The pair U,r iv is then approximated at the k-th stage by the roots uk. ﬁk of
2
+ + = .
u a v Bk 0

It seems likely that while (2.24) is nicer from the viewpoint of mathematical simplicity,
it is better to solve (2.19), (2.20) rather than (2.24) because the formula for the kernel
W(Y,t,o,H(ao)) in (2.24) is rather complicated.

If a simulation routine combining the period estimator, compensator and a
methematical model of the plant to be controlled is already in hand, as was the case for
the writer, approximate solutions of the variational equation can be obtained by running
the simulator with slightly different initial conditions and forming the appropriate
difference quotient of the resulting solutions. This ‘oes not test the validity of our
derivation of the variational equation but, as we will see in Section 5, it does provide

results consistent with the proposed functional equation model for error propagation.
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j_v

B B St heke Bauihiee eth s Byt AN NS R Radary v . RGN S-S T AN A A0 A SRR B/t T Mok 2 A e o i A A A T B g A ien ek J0oh Sl .""7“-!

4. NUMERICAL REALIZATION OF THE PERIOD ESTIMATOR

If x(t) is a solution of
x(t) = (A + CX) x(t) + v(t), t>0,
and the disturbance v(t) is periodic with period T:
vit) = v(t + T) ,
then an observation on x(t),
w(t) = H x(t)
will tend exponentially to a period observation, i.e.,

1im (w(t) - w(t +T)) =0 .
tre

In this section we develop a numerical procedure for estimation of T which is a
realization of the continuous procedure described in Section 2. We will take w to be
scalar here but the extension to vector observations is quite immediate.

We will suppose that w(t) 4is not available continuously. Rather, we have discrete

samples

w = m(tk), LWRRL S h>0, k=20,1,2, «cos
For computational purposes we define the interpolated observation on S < t< tk+1 by

E(tk +0h) = n (0) = ow

e+ 1 + (1 - o)wk, 0<o< 1., (4.1)

We note that E(tk) = Wt ,.) =w . . We define n, =W, k=0,1,2,.... Our method

k+1 k+1

for estimating T is to form, at each instant t;, and for a range L0 < 2 < L1, the
functions
°k,l(°) =N - nk-l(O) (4.2)

and determine values lk' o of %, ¢ which minimize

k
ki
C, ,(0) = vp, . 80,
k, % =0 k=3 ,8

which should be compared with (2.6). The functions (4.2), of course, require only the

values nk =, - mk*1

x e+t for this description and the pk,l admit a comparable

~25=




tfinite characterization. Once lk'ok have been determined, the estimate for T at the
instant t, is

T, = (lk - Ok)h . (4.3)

k
If Y is clogse to 1 this estimate may be expected to change only slowly, as k varies,
in response to varying periodic behavior of w(t) while values of Yy closer to zero
provide more rapid updating capability. The use of the parameter ¢, allowing for
interpolation between recorded discrete data, permits one to obtain accurate results
without an excessively fast sampling rate.

Let us now examine the computational considerations applying to the method. For

0 <0 <1 we have

pk’l(a) =0, - lon g4y v OO - °)"k-t]

and thus

2 2 22 2.2
() Nt 9N gy P (1m0

s k-1

K,%

- 20m N _eeq - 200 - aingn, _p + 2001 - LR LIS NP

Defining

=} ynr_, .
3=0 k-2-3

-

P = E v?n _.n
ko=t = 2o ¥ Mked ety

= ) 43
P k241 jzo Y M k-41-3 7

- b}
Pr-t+1,k-1 jz Y My g41-3"k=2-5 *

0

-26-
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+ [sk + 8 _, - zpk’k_l] .

The numbers sk' sk-l' sk_!‘+<| are included in Spe eeey sk_Lz, and these are stored in a
“push-down" mode and updated via

2
Seer ™ Mgt Y YS o S(ket)er T Skr oo

S =5 .
(k+1) L2 k—(l.z-i)

Similarly Pk,k-t' Pk,k-l+1 are stored among Pk,k—1’ ceey Pk,k—Lz and are updated via
Pret kt1=2 = Mket"ker-2 ¥ TPk kg’ OEC: (4.4)
Finally, it is necessary to store
Prok=1,Pke1,k-2, 0000 Prenyet e,
The numbers Pk,k-! are also updated via (4.4) and
P = P .
(k+1)=2, (k+1)=(2+1) k=(2=1),k~2
defines the "push-down" operation.
With the above numbers available we clearly have
aC
1 Kk, L
L. 72 - -
2 o5~ Ol5c-er 7 Sken ™ PPucger, ket
(4.5)

+ [8yy - Py k=241 * Py x-g * Pk—l+1,k-l] .
In particular,

+

P k-2 ¥ P, k-t ¢

1%, es . -n
2 90 k=L k, k=2+1

RiRas 713 - +
2

%0 ® Seoaet T P k-ter Y P k-t T Preget, k-t °
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Each pair £, ¢ corresponds to a delay T(%,0) = (2 -~ g)k. Thus Ck l(o) can be
’
asgsociated with a function ck(t) defined for tk - Lzh <t < tk - L1h, the values of

£ corresponding, when o = 0, to the pointg ¢t = t - fh. As 0 increases from 0

to 1 we pass from t = te - Lh to t = te - (t - 1)h. Thus we have

ac, 4 3
LCI PR T = (e, -tn)e
ac, i ac,
L PR 3 I - (tk - (2=1)n)- .

| candidate for the minimizing value T, 3just in case

aC )
FE e ] <o
' a=0 g =1

i.e.,

S +

k-2~ P k=241 * P, k-2 t Proger,x-2 2 0 ¢

S <0 .

k-2 = P k-2 * P, k-2+1 " Pr-g,k-2-1

On the other hand, the interval [(2 - 1)h, lh] is a candidate for containing the
minimizing value of T, Jjust in case
ac % ac

1 7k,
2 o o >0,

i.e.,

Speg41 ~ P, k-t+1 ¥ P k-2 T Preter,k-2 > 0 ¢ (4.6)

sk-l - P K, k=L+1 + Pk,k-l + Pk-l*1,k—£ <0 . (4.7)
P
} If (4.6), (4.7) are true for a given £, we compute the corresponding o© by setting
.
- (4.5) equal to zero, i.e.,
5 = - [Sx-2 = P, x-261 * Pi, k-2 ¥ Preper, k-t
. 15k-241 7 Skt "Froge1, k-]
3
.
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Once the finitely many possible candidates for T, have been gelected by this process,

Ty 1is chosen from these as the one yielding the smallest value of S ‘(a).
’

It is possible to economize on memory space by using slightly modified quantities.

With

Pr,t ™ Tk T Mgeg ¢

-
- 2 2
Skt jzo Yo,y 00
-
- 2
Pk,l,l" jz‘.o Y pk-j,lpk‘jol‘1 .

-

I
S 4= L Yo _ . ,_
A A k=9, 2-1

)2,

updated via
Pret, g ™ Miey = M) * P geqe 8% 1020 eees Ly,

2 o -
sk*1,l + (pk+1,l) +v sk,l , 2 142, soe, Lz

~ -

Pret g, 0=1 " Praq,tPke1,2-1 ¥ Y By g 09,0 720 ens L

2 ’

it may be seen that we have

2ee . . . . .
I R CAPIE T SIS SIPIRY I LI C NP NPT I O NP
80
ac ~ -~ -~ ~ ~
1 9% ¢
1 -0 - + - - P
2 30 (8,0 ™ 2P, 0,001 * Sine1) ™ (S, ™ Pron,emd)

and this vanishes when

LA CAPES SRV CNL R SR SN I

The other aspects of the analysis remain as above, This procedure is the one actually used
in Fortran SUBROUTINE PERIOD (L2, L1, GAMMA, H, PER, Y), whose listing follows and which

forms the basis for the numerical experiments carried out in Section 5. Here PER is the

=-20=




returned period estimate while Y is the supplied observation at each instant ty. The

other argquments are parameters whogse identification is clear.

SUBROUTINE PERIOD(LZ2,L1, CAMMA, H, PER,Y)
DIMENSION S(40),P(40),RHO(40)

INTEGER L.L1,L2, LIPL. LML

LaM1 = L2 -

ETAOLD = ETANEW

ETANEW = VY

ALM1 = KL - 1
15 RHO(KL) = ETANEW -~ ETAOLD + RHO(KLM1)
RHO(1) = ETANEW - ETAOLD
DO 16 L = §,L2
16 S(L) = GAMMA#S(L) + (RHO(L))#»2
DO 17 L = 1,LaMl
LP1 = L+1
17 P(L) = GAMMA#P(L) + RHO(L)#RHD(LP1)
PER = FLOAT(L1)#H
SMINI = S(L1)
LIP1 = L1+}
DO 26 L = L1P1,L2
LMt = L-1
IF(S(LM1).LT. SMINI)GO TO 21
60 TO 22
21 PER = FLDAT(LM1)#H
SMINI = S(LM1)
22 IF(P(LM1). GT. S(LM1))GO TO 24
IF(P(LM1) GT. S(L))GD TO 24
QUO = S(L)I+S(LM1)-2 #P(LM1)
IF(QUO.LT. . 000001)60 TO 26
SIG = (S(L)-P(LM1))/QUOD
VALSIG = SIG#SIG#S(LM1)+(1. -SIG)# (1 -SIG)#F(L)+2 #SIG#
1(1. -SIG)*P(LM}1)
IF(VALSIG. LT. SMININGO TO 23
GO TO 24
23 PER = (FLOAT(L)-SIG)#H
SMINI = VALSIG
24 IF(S(L). LT SMINIIGO 7O 25
G0 TO 26
25 PER = FLOAT(L)#*H
SMINI = S(L)
26 CONTINUVE
RETURN
END

If there is some danger of confusing the minimal period T with one of its

multiples 2T, 3T, etc., this can usually be overcome by specifying L1, L2 correctly.
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5. SOME NUMERICAL EXPERIENCE WITH PERIOD

We have carried out extensive computer based simulations using SUBROUTINE PERIOD

———

described in the preceding section. Here we will describe results obtained in connection

with the plant

.
3
x' 0 1 yx' 0
(%) = (5 .)%) + Gglm+w» (5.1)
x x
with
vit) = z'(¢e) (5.2)
;1 0 a z‘
( 2) - (-0 o) ( 2) . (5.3)
z z
b
; The rather nondescript parameters appearing in (5.1) result from the fact that this damped
t inertial system is a model for a certain physical plant of interest. A compensator was
»
L‘ constructed in the form (0.7) using § = -ePo with P; as in (1.10). To provide a more
)
;. or less standard basis of comparison the feedback coefficients in all cases were chosen to
- achieve critical damping (i.e., multiple real eigenvalues) at various rates in the closed
o loop matrix

[1] 1 )

+
A+ox= (2ak1 - 2428k,

(5.4)

In this very simple example

pece (Y,

% and -L (cf. (0.1)) were both chosen to be 2 x 2 identity matrices. For the values
of ky and kp which were used P turns out to be a very small matrix and we used
€ = 1000.
The output used for the period estimation was w(t) = x'(t) + y‘(t) and the output

shown on the diagramg is x‘(t). It will be seen that the initial estimates for the

period, T(t), are wildly inaccurate but, in the cases when the complete

] plant/compensator/identifier system is asymptotically stable, the estimate T(t)
K -.
-
. -31-
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converges to the correct value T; (within the accuracy permitted by the approximations
inherent in PERIOD, as described in the preceding section). 1In all cases we selected
z'(0) = 1, 22(0) = 0, so

z'(t) = cos (at), zz(t) = -a gin (at) .

In Figures 1~16 the odd numbered Figures show the output x‘(t) while the next,
even-numbered figure in each case shows the period estimate T(t) for the same run.

Figures 1 through 4 correspond to choices of k4 and kj; such that the matrix (5.4)
has a double eigenvalue XA = -5. In Figs. 1, 2 ap = 20% (10 Hertz) corresponding to
Tg = -1, 2indicated by the dotted line. Figures 3, 4 illustrate the corresponding
experience for a, = 30w (15 Hertz), or Ty = .0667. Here the period identifier diverges
from the correct value and, as seen in Fig. 3, no significant reduction of the oscillation
of x‘(t) is realized. We believe that this is accounted for by the fact that the term

21!/('1‘0)2 in (2.21) changes from 2007 in the 10 Hz case to 450 in the 15 Hz
case.

Figures 5-8 show the 10 Hz case with k4 and k, chosen so that (5.4) has a
double eigenvalue A = -8 (Figs. 5 and 6) and with k; and k, chosen so that )\ = -9,
These cases seem quite satisfactory with rapid attenuation of the oscillation in x'(t),
better in the second case than in the first, and rapid convergence of the period estimate
T(t) to Tg = .3. The corresponding experience in the 15 Hz case is not nearly so
satisfactory. Figs. 9 and 10 show the performance for A = -8.5 while Figs. 11 and 12
show A = -10. We see from Figs. 10 and 12 that, although the value To is unstable, the
estimate T(t) tends to undergo a self-excited oscillation about the equilibrium value
indicated by the dotted lines. The evidence favors the conjecture that in these cases the
nonlinear equation (2.11) may exhibit a Hopf type bifurcation as the parameter T, passes
from .1 (10 Hz.) to .0667 (15 Hz.). Detajiled analysis of this possibility must await
later treatment.

Figures 13 through 16 show experience in the 15 Hz case with k; and ky selected

so that A = -14 (Figs. 13 and 14) and so that A = -20 (Figs. 15 and 16). We see that
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the performance improves as (5.4) is made progressively more stable, in agreement with the
conjectures of Section 3. The small residual oscillation evident in Fig. 15 is probably
due to the fact that PERIOD does not provide an exact estimate even when the corresponding
continuous process associated with minimization of (2.4) or (2.6) is asymptotically
stable.

Figures 17 and 18 show variational AT solutions, obtained in the manner described
at the end of Section 3, for the 15 Hz case with A = -9 and A = -14, respectively.
Because T{(t) does not converge to Tg in the first case (cf. Fig. 12), even the
variational solutions are not sinusoidal.

In Fig., 18, corresponding to A = -14, T(t) converges to Ty = .0667 (cf. Fig. 14)
and the corresponding variational solution tends to zero in a convincing exponentially
damped sinusoidal manner, this behavior becoming more convincing as t increases. It is
of interest to estimate the frequencies and damping factors here and compare them with the
eigenvalues of M(au), F(uo). Analyzing the data plotted in Fig. 18 one obtains the
estimate T = .66 and, comparing the successive amplitudes, we see that the oscillation

there is approximated by
e(-.525+i9.52)c +c e(-.525-:‘.952)2:

c, _ . (5.5)
Here 0 4 0 0
-190.12 -27.188 -28 0
M(ay) -2,966 82.417 0 1
-.009 -2.966 -8873.8 0

and its eigenvalues may be computed to be
-2,77 + 1105.32, -10.82 ¢ i15.9 .
None of these correspond to (5.5) and we conclude that the dynamics exhibited in the

identification process arise from a different source - which, on the basis of our earlier

investigations in this paper, we believe to be the functional equation (2.22)
(equivalently (2.19), (2.20)).

In Figqures 19-26 we indicate the effect of varying the parameters Yy and ¢

)

k‘ (cf. (1.9), (2.4)) while leaving the feedback parameters in K fixed at the values which

Y
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produced Figures 13 and 14 with Y = .9 and € = 1000. This corresponds to the double
eigenvalue A = -14 for (5.4).) Here it needs to be explained that the value "GAMMA"
referred to on the figure heading corresponds to e-Yh, where h is the length of the
sampling interval used by PERIOD. For all cases studied here h is ten times the H

value shown in the figure heading; thus h = .01 and

GAMMA = .8 = ¢ 01

loge.a
* Y = ———= =-22.3 ,
-.01
GAMMA = .9 *» Y = -10.5
GAMMA = ,95 + Y = =-5.13 .
As we see by comparison of Figs. 19 and 20 with 13 and 14, performance is substantially
degraded by discounting past values too much, corresponding to Y = -5.13 on the other
hand, gives substantially better performance than Yy = -=10.5.

For Figs. 23 and 24 we have set GAMMA =.9 again but have increased € to 2000
rather than the earlier 1000. The improvement over the results in Figs. 13 and 24 is
again quite marked. To obtain the results of Figs. 25 and 26 we "pulled out all the
stops”™ and set GAMMA = .95, ¢ = 2000 and chose feedback parameters corresponding to a
double eigenvalue A = -20 for (5.4). Here we finally obtain the sort of sinusoidal
disturbance rejection one would hope for.

It is clear from these numerical studies that the procedure we have described here
can be effective for vibration suppression under certain circumstances. We have also made
a case in this article for the proposition that the near equilibrium plant/compensator/
identifier dynamics are governed by a functional equation involving an infinite delay and
periodic coefficients. It remains for other investigations to develop the detailed
relationships between the design parameters and the dynamics of solutions of this

functional equation upon which a design methodology for effective performance might be

based.
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6. SKETCH

b ol S LRt e N A R A

OF _THE PROOF OF THEOREM 5.

Let

have

where k

and we def

Then, with

(6.1) yiel

Using the

2(t), W(t,s), etc., be as in the statement of Theorem 5. For any t 2 0 we

t
z(t) = | W(t,s)z(s)ds =
-l
t kT 0 -
J W(t,s)z(s)ds + | W(t,s)z(s)ds + | W(t,s)z(s)ds , (6.1)
kT 0 -

is the largest integer such that KT € t. We define z, € Li[O,T] by
z (1) = z((2=1)1 + T}, T-C (0,7}, L2 1,
ine z_, e L2{0,t] by

-2 m

z_, (0 =z(-(enT +7), Te (oM, £>0.

t=kT +1T, s=4ALT +0, se€ [2T7,(2+1)T] ,

ds
1 k T
2, 4q(T) - g W(KT + T,KT + 0)z,,,(d)do - j£1 g W(KT + T,(3 = DT + o)z (0)do
o« T
= L JWkr+T, (£ + 1T+ 0)z_ (0)d0 . (6.2)
=0 0
periodicity relation (3.7) we have
WKT + T, (3 - DT + 0) = w(t, - (k = §)T + 0) = Wy (T40)
for any integer j € k. Then (6.2) becomes
T k T
2, (1) = [ Wo(T,0)0z, 4(0)do = )} [ Wy, (T,0)z;(0)do
0 j=1 0
o T
=) Jw (1,0)z_,(0)do . (6.3)
2=0 0 k+142 3
-48-
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The conditions (3.7), (3.8) show that the last sum converges in Li[O,T]- We may write

(6.3) as a vector linear recursion equation in Li[O,T]:

k L]
(r-p)z - ) .z, = ) P z {6.4)
0 “x+1 =1 k#1-3 T3 0 o0 kel T2
where
T
(P, 2)(T) = [ W,(1,0)z(0)do,
0 o 0
T
(P 2z) (1) = J W (1,0)z(0)do, k = 1,2,3 ....
0

As is well known ([3]) I - Py 1is boundedly invertible, Pgs Py, Py, ... are all
compact. Then

o, = -1 =27, k= 1,2,3, ... (6.5)
are all compact and, keeping (3.7) in mind, it may be seen that for some positive
number D

Ig_, 1 < pe T, x = 1,2,3, .... (6.6)
Then (6.4) can be written,with an obvious re-indexing, as

-1 -k ~
z + ) Q,z + ) Q,z , k= 1,2,3, cens (6.7)
k Lkt 1 27 4k g L7 8+k

Given a sequence {yk[- ® < k < ”} C H, where H is a Hilbert space, and supposing

that
+ k
Iy, 1 €M (YHT, k= 1,2,3, ..., (6.8)

by 1 <M (5, ko= 0,-1,-2,03,.., (6.9)

where M*.M-.Y*.Y- are all positive numbers and Y+ > Y, we define the bilateral

"z-transform®” (discrete Laplace transform) of {yk} by

ny) =) ykk-k =nton, >y,
k=1
ok
- yor I, A <y (6.10)
k=0
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Clearly, n(A) is analytic in neighborhoods of both 0 and ®. In many cases
+
n (A) and n=-(A) are analytic continuations of each other. For example, if for all
integers k
_— € H #0e
Yk H Yol YO P

+ -
then with Y =Y = |u|, M =M =1, all of the above are valid for

nt oo =, Al > ful, nTo =y, AL < Jul, nod =

If, correspondingly, {Qk]-° < k < w}, 15 a sequence of bounded operators on H

S A o an /o T Y
St -~

such that

-

1ot < B o")®, ok =1,2,3 ... (6.11)

1g_ 1 < B (o)X, x=o0,-1,-2, ..., (6.12)

where BY, B”, p+, p~  are all positive (and p+ > Y+, p - <Y in our application), we

may define the discrete Fourier transform of {Qk} by

Sy
. -

QM) = ) Qkkk . (6.13)

k==

Clearly the series converges and Q(A) 1is a holomorphic operator valued function for

- +
- < |A] <ot . 1f Qy = 0 for all positive k, them P may be taken to be * and
Q(A) will be holomorphic for |A| > ¢7, including X = =.

The convolution of {Qk} 2 Q and {yk} 2 y is defined by

* \
£, 2 (Qy), = kz-,Qkyk+" (6.14)

the sum being convergent when (6.8), (6.9), (6.11) and (6.12) apply and

p+ > Y+, p - <Y, as we suppose. To anyone familiar with transforms of this type the

first question occurring concerns the relationship of the transform ¢(A) of {fl} to

the transforms Q(A), n{A). The answer is easy but not completely obvious. Let

. . _ -
p - I'' and T be positively oriented circles centered at A = 0 with radii ™, T,

p .

" Y' <t <o, 07 <" <Y . Then, as we show in the more complete discussion [7], if
|

L -50-
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r=rt-r" and 2 lies in the exterior of the annular regions between rt and T,

j einigid (6.15)

PO = = o

274

This condition is necessary and sufficient for (6.14) to be true.

When Q =0 for k positive and @, has a bounded inverse, (6.14) becomes

0
QY =f (6.16)
ki-“ kik+4L L
and, given the initial values
Yo = ;-z' 2=0,1,2,3, «c0 (6.17)

and f,, fz, f3 see, We can compute Yy, Yp: Y3scees The case of interest to us is the

homogeneous case f4 = f; = f5 = ... = 0. Here it may be seen that with
nA) = )y AT, ) = ) oy AT, (6.18)
=0 k=1

and for |A| > r", A not a singularity of Q(A)

=1 -
n(x) = =T Q)

1 Q(z)n(z)ds
T -t

Since Q(A) is analytic at A = ® and Q(») = QO’ which is nongingular, if we take
r¥, the radius of F+, so large that all singularities of Q(A) are included in the

+
interior of I , then the individual Yk k= 1,2,3, ... may be recovered via

Y= £+ noAElan, ko= 1,2,3, ... (6.20)
With the use of formula (6.16) the proof of Theorem 5 may be completed. 1In our
application H = Li[O,T], Q. = 0 for k positive, Qg = I, Q.q, Q.3, Q-3+ ... are all
compact and the series (6.13) converges uniformly for IA] >r +68 forany 6§ > 0. It
is known ([1], [5]) that the singularities of Q(A) must be isolated in any such region

and, for each such singqularity Xk the null space of Q(Ak) must be finite
dimensional. Let T, be the circle centered at 0 with radius r + §. We may assume

s
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that Pg meets no singularities of Q(A). Then, applying (6.16) to the 2z, of (6.7) we

have
_ 1 k-1 1 k-1
z, =3y fonaaf"an + eI J_ a0 Taa (6.21)
r r
§ [
=2z + z kK =1,2,3, eee,

k,F k,x +§ *

where FG =1t - Pg . From (6.19) and (6.21) it is clear that

lz,,r” + s1 < R+ sk

-~

where M is a constant which may be bounded in terms of ;, hence in terms of the

;-z' £ =20,1,2, ++.. On the other hand

) x
Z%,F A€ IntPGAj Res n(A ) .

In the case of a simple eigenvalue Aj with one dimensional null space, which is all we

will study here, from the formula (6.19) for n it may be seen that

; | (b,,Q(Z)T(Z)ds
- = 4. (6.22)
W18 ¢ X, - ¢ 3

Res n(A.) =
]

where ¢. is a non-zero vector in the one dimensional null space of Q(Aj) and wj is a

3
corresponding vector in the null space of Q(A_.)* such that (y.,é.) = 0. We see
b] 373 Li[O,Tl
in any case that Z is a sum of the form
’
z, = A coe K= 1,2,3, eens (6.23)
k,F xje Int r6 j 35 G

The corresponding solutions zp(t), zs(t) of (3.6) (or (6.1)) are obtained by inverting

the transformations which follow (6.1). The term e-BT of (3.11) is identified with

r_ + 8. It is greater than e~CT yhich is identified with r~. Thus 2z, {(t) satisfies

B
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Since 2z (t) is a solution of (6.2), the form of that equation shows that zp(t)

must be a continuous function. The form (6.23) then implies that zp on any interval
[kT,(k + 1)T] is Aj times the corresponding value of zp on [(k - 1)T,kT]. From this }
i

is clear that
QA t = A, 0, 0 .

AT

We identify e in (3.12) with A and P(T) with the T - periodic extension of

b
~At

e oj(t) (which satisfies

AT
¢

P(T) = e "Tp (1) = A "oj('r) =9

~-\0
0) = (0) = P(O
3 j (0) e ¢]( ) (0))

3
Thus, modulo the usual remarks which most apply to non-simple poles of Q(X)-1, which
lead to solutions of the form (3.13), we have completed the proof of Theorem 5, Further
details may be found in [7]. The main point of the theorem is that the dominant solutions
of (3.6) (or (6.1)) are those associated with the larger singularities of Q(A) and those

solutions are of the type (3.12) or (3.13).
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